
TEL-AVIV UNIVERSITY

RAYMOND AND BEVERLY SACKLER

FACULTY OF EXACT SCIENCES

SCHOOL OF COMPUTER SCIENCE

Extending the Order Preserving Submatrix:

New patterns in datasets

Thesis submitted in partial fulfillment of the requirements for the M.Sc. degree in the

School of Computer Science, Tel-Aviv University

by

Sagi Shporer

The research work for this thesis has been carried out at

Tel-Aviv University

under the supervision of Prof. Amos Fiat

May 2004



Abstract

This paper concerns in finding local patterns in gene expression datasets. We present new order

relation patterns, and develop algorithms which finds those pattern. Our algorithms are the

first algorithms to find the exact results for those patterns, yet in most cases they outperforms

existing heuristical algorithm. Finally we present an algorithm for the broader problem of

frequent itemset mining.

The patterns we investigate are order relations that are localized to subset G of the genes and

subset T of the tissues. We introduce the following local order relation patterns: (a) patterns

in data that contains errors, such as expected in probed data, (b) patterns between groups of

tissues, (c) patterns in layered submatrices and (d) dynamic order relation patterns mining,

without predefined pattern mask.

The above patterns are similar to patterns found by frequent itemset mining (FIM ) algo-

rithms. We present an algorithm for mining frequent itemsets, AIM-F (see also [FS03]). Past

studies have proposed various algorithms and techniques for improving the efficiency of the

mining task. We integrate a combination of these techniques into an algorithm which utilize

those techniques dynamically according to the input dataset. The algorithm main features in-

clude depth first search with vertical compressed database, diffset, parent equivalence pruning,

dynamic reordering and projection.

We introduce exact and efficient algorithms for mining the order relation patterns described,

based on techniques and ideas from frequent itemset mining algorithms. The algorithms include

features from AIM-F among other optimizations for order relation problems which we introduce.

We perform extensive experimental evaluation of our algorithm on serval datasets, and com-

pare the patterns found verses a random matrix datasets. We also do experimental testing of the

AIM-F algorithm suggesting that our algorithm and implementation significantly outperform

existing algorithms/implementations.
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Chapter 1

Introduction

The advent of DNA microarray technologies has revolutionized the experimental study of gene

expression. Those high throughput technologies produce vast amount of information. The

analysis of those datasets poses computational and algorithmic challenges.

One of the usual goals is identifying groups of gene according to their expression. The most

common approach so far is finding global patterns in the dataset. Most frequently used are

clustering techniques, which were proved to be successful in many contexts. The novel paper

of [ESBB98] adopted clustering techniques to the analysis of gene expression data. The paper

was followed by much research, which is reviewed in [SES02, CYBD+01, GB00, BEB99].

However clustering has its limitations. Clustering solution implies that each group of genes

in a cluster has a single biological function, which may be an oversimplification of the biological

system. Another drawback is the difficulty in identifying patterns that are common to only small

portion of the data. Other clustering approaches described in [CC00, TSS02, GLD00, LO02].

[BDCKY02] describe a problem called Order Preserving Submatrix (OPSM). An OPSM is a

submatrix created by a subset G of the genes, a subset T of the tissues and some ordering π of

T such that for every gene the values are sorted in an increasing order in respect to the order of

T . The problem is to find all the OPSMs in the dataset — with |T | greater than some minimum

threshold on |G|. Example of an OPSM is shown in figure 1.2 (Mined from the dataset in figure

1.1). To find those OPSMs [BDCKY02] use a greedy heuristic.

In this paper we extend the framework of OPSM to allow more patterns:

• OPSM with Errors - The gene expression data is a probed dataset and might contain

errors. We present an extension of OPSM that allow errors in the pattern. We allow up

to γ values of every gene in the submatrix to violate the increasing sequence. See example

in figure 1.3 (based on the dataset in figure 1.1).
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genes \ tissues c1 c2 c3 c4 c5 c6 c7

r1 1 3 4 0 6 2 7
r2 5 2 1 3 8 4 7
r3 9 1 8 5 7 4 3
r4 2 6 8 4 1 0 7
r5 0 1 4 8 2 6 5
r6 4 2 7 1 6 0 3
r7 6 5 1 8 0 7 3
r8 2 0 3 9 8 5 6
r9 0 3 5 9 1 7 2

Figure 1.1: Sample gene expression dataset

row \ column c5 c3 c6 c4

r5 2 4 6 8
r7 0 1 7 8
r9 1 5 7 9

Figure 1.2: Example of OPSM for pattern (t5, t3, t6, t4) : The longest pattern with support 3

row \ column c2 c3 c7 c6 c4

r3 1 8 3 4 5
r5 1 4 5 6 8
r7 5 1 3 7 8
r8 0 3 6 5 9
r9 3 5 2 7 9

Figure 1.3: Example of OPSM with Errors for pattern (t2, t3, t7, t6, t4), γ = 1 : For each gene,
the values are increasing with the tissues, errors are marked in bold. This is the longest pattern
with support 5. Notice that for r8 more than one error marking is possible

row \ column {c4 c6} {c2} { c3 c7}
r1 { 0 2 } { 3 } { 4 7 }
r4 { 4 0 } { 6 } { 9 7 }
r6 { 1 0 } { 2 } { 7 3 }

Figure 1.4: Example of Increasing Groups Sequence of size 2 as most, pattern
({t4, t6}, {t2}, {t3, t7}). The increasing order relation sequence is between the groups, and no
order is implied inside the groups.
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c5

↙ ↘
c7c3

↙ ↘
c4 c6

row \ column c5 c7 c3 c4 c6

r5 2 5 4 8 6
r7 0 3 1 8 7
r8 1 2 5 9 7

Figure 1.5: Example of Connected DAG order relation. On the left is the graph of the pattern
which implies the following order relation : c1 < t7, c1 < t3, c3 < t4 and c3 < t6. On the right
we see the corresponding genes from the dataset that support this order relation.

• Increasing Groups Sequence - In the previous patterns, every tissue stand by itself. In this

pattern the tissues are divided into groups and the order relation is between the groups.

The size of each group is a given parameter, and the task is to find the tissues for every

group, such that they are supported by |G| genes or more. There is no order between the

tissues in the group. See example in figure 1.4 (based on the dataset in figure 1.1).

• Layered submatrices - Similar to Increasing Groups Sequence, with a small difference,

every tissue can be included only in a specified predefined group. The motivation is to

divide the tissue according to some parameter, such as type of cancer, and try to find genes

that create increasing sequence between the groups (layers) of the tissues. The patterns

are the same as those in Increasing Groups Sequence however the search space is different.

• Connected Directed Acyclic Graph (Connected DAG) - Previous patterns are restricted

to a certain order relation between the various tissues. For example in an OPSM every

gene expression is larger than the gene expression in the tissue before. We present an

attempt to search the space of patterns, to find significant patterns between the tissues.

The pattern is best represented in a connected DAG where each edge represent an order

relation. See example in figure 1.5 (based on the dataset in figure 1.1).

The patterns described above and the OPSM problem have similar characteristics to some

classical data mining problems - Frequent Itemset Mining (FIM) [AIS93] and sequential patterns

mining [AS95]. Those problems attracted much research in the last decade which we employ

to introduce efficient mining algorithms for the patterns described. A key observation is that

the patterns described can be grown from short patterns to larger ones, which is a fundamental

principal in many of the frequent itemset and sequential pattern mining algorithms.
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1.1 Organization of this thesis

The rest of this thesis is organized as follows. In rest of this chapter we describe our contribution

and related work. Chapter 2 concerns in the formal problem definitions and NP-Completeness

proofs. In chapter 3 we describe the building blocks of our algorithms. In chapter 4 we describe

the mining algorithms for the order relations and analyze the complexity per output (which

is polynomial). Chapter 5 concerns in the experimental evaluation of the various algorithmic

building blocks and the AIM-F algorithm. In chapter 6 we describe the experimental evaluation

of the order relation mining algorithms and analysis of the results.

1.2 Contributions of this thesis

This thesis has contribution in two distinct fields:

• Frequent Itemset Mining - We combine several pre-existing ideas in a fairly straight-

forward way and get a new frequent itemset mining algorithm. In particular, we combine

the sparse vertical bit vector data structure along with the difference sets technique of

[ZG03], thus reducing the computation time when compared with [ZG03]. We show how

to combine diffsets and projection techniques, which were never used together before.

The various techniques were put in use dynamically according to the input dataset, thus

utilizing the advantages and avoiding the drawbacks of each technique.

Experimental results suggest that for a given level of support, our algorithm/implementation

is faster than the other algorithms with which we compare ourselves. This set includes

the dEclat algorithm of [ZG03] which seems to be the faster algorithm amongst all others.

See in Figure 1.6 run time comparisons. This figure describes running times as function

of minimum support for various algorithms on a sample dataset. Our algorithms, AIM-F ,

shows consistant good behavior. An extensive comparison is made in the chapter of the

frequent itemset mining experiments of this thesis.

This work has been published in [FS03].

• Order Relation Patterns - We introduce new types of local order relation patterns.

We introduce pattern with errors, patterns in groups of columns, layered matrices and

patterns with various order relation between the columns. We prove that the mining task

of those patterns is hard (NP-Complete).

We introduce and implement efficient algorithms, derived from our frequent itemset mining
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Figure 1.6: T10I4D100K dataset

algorithm, to mine order relation patterns. We introduce two new general tools, which

increase the speed of the mining. These are:

– Order Relation-2 (OR2) matrix: a bit map matrix which enables fast comparison

and support checking

– Groups pruning technique: Early pruning, without explicit support checking, for

some type of patterns (groups)

The algorithms we introduce are exact algorithms that return all the patterns fitting to

the pattern restrictions. The algorithms we introduce have polynomial complexity with

the output size.

Problem Complexity per output Details

OPSM O(mn)

OPSM with Errors O(mγ+1(γ + 1)2n) γ - Number of Errors allowed

Increasing Groups O(mqn) ≤ O(m2n) q - Maximal group size

Layered Submatrices O(mqn) ≤ O(m2n) q - Maximal layer size

Connected DAG O(msn) ≤ O(m2n) s - Longest pattern found
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Extensive experimental evaluation of the algorithms on real gene expression datasets show

their efficiency (even in comparison to previously reported results of heuristic algorithms).

1.3 Related Work

1.3.1 Frequent Itemset Mining

Since the introduction of the frequent itemset mining problem [AIS93] and the Apriori algorithm

[AS94] many variants have been proposed to reduce time, I/O and memory.

The frequent itemset problem is defined as follows - Let I = {I1, . . . , Im} be a set of items.

Let D = {t1, . . . , tn} be a transactional dataset such that cj ⊆ I. Let minsupport some positive

parameter. We call a set α ⊆ I an itemset. The support(α) is the number of transactions in D

that contains α (e.g. α ⊆ tj). An itemset α is called frequent if support(α) ≥ minsupport. See

figure 1.7.

TID I
1 A B C D
2 B C
3 A C
4 B D

support(B) = 3 (TIDs 1,2,4)
support(BC) = 2 (TIDs 1,2)
support(ABC) = 1 (TIDs 1)

Figure 1.7: Frequent Itemset Mining Example - On the left table is the dataset. On the right
side are itemset examples and their support values.

Apriori uses breath-first search a bottom-up approach, to generate frequent itemsets. (I.e.,

constructs i + 1 item frequent itemsets from i item frequent itemsets). The key observation

behind Apriori is that all subsets of a frequent itemset must be frequent. This suggests a

natural approach to generating frequent itemsets. The breakthrough with Apriori was that the

number of itemsets explored was polynomial in the number of frequent itemsets. In fact, on a

worst case basis, Apriori explores no more than m itemsets to output a frequent itemset, where

m is the total number of items.

Subsequent to the publication of [AIS93, AS94], a great many variations and extensions were

considered [BMUT97, LK98, Zak00]. In [BMUT97] the number of passes over the database was

reduced. [LK98] tried to reduce the search space by combining bottom-up and top-down search

– if a set is infrequent than so are supersets, and one can prune away infrequent itemsets found

during the top-down search. [Zak00] uses equivalence classes to skip levels in the search space. A

new mining technique, FP-Growth, proposed in [YC96], is based upon representing the dataset

itself as a tree. [YC96] perform the mining from the tree representation.
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In AIM-F [FS03] we build upon several ideas appearing in previous work for frequent itemset

mining, a partial list of which is the following:

• Vertical Bit Vectors [SHS+00, BCG01] - Instead of representing the dataset as a set of

rows, the dataset is represented as a set of columns. Every column is stored as a bit vector

(bit for every row) thus Vertical Bit Vector. Experimentally, this has been shown to be

very effective.

• Projection [BCG01] - A technique to reduce the size of vertical bit vectors by trimming

the bit vector to include only transaction relevant to the subtree currently being searched.

• Difference sets [ZG03] - Instead of holding the entire tidset at any given time, Diffsets

suggest that only changes in the tidsets are needed to compute the support.

• Dynamic Reordering [Jr98] - A heuristical approach for reducing the search space - dy-

namically changing the order in which the search space is traversed. This attempts to

rearrange the search space so that one can prune infrequent itemsets earlier rather than

later.

• Parent Equivalence Pruning [BCG01, Zak00] - Skipping levels in the search space, when

a certain item added to the itemset contributes no new information.

The algorithms we describe in this paper for the order relations are build on AIM-F basic

algorithmic ideas (although some of them can not be used in that context).

We should add that there are a wide variety of other techniques introduced over time to find

frequent itemsets, which we do not make use of. A partial list of these other ideas is

• Sampling - [Toi96] suggest searching over a sample of the dataset, and later validates the

results using the entire dataset. This technique was shown to generate the vast majority

of frequent itemsets.

• Adjusting support - [SK02] introduce SLPMiner, an algorithm which lowers the support

as the itemsets grow larger during the search space. This attempts to avoid the problem

of generating small itemsets which are unlikely to grow into large itemsets.

1.3.2 Sequential Mining

In parallel to the frequent itemset mining research, the sequential pattern mining [AS95] algo-

rithms were developed. In sequential pattern mining problem, each transaction, besides itemset,

7



include a time stamp and user id. The task is to create a time increasing chain of itemsets that

are common (frequent) in the dataset. While related to frequent itemset mining, it differs in

the sense that frequent itemset mining concern in intra-transaction patterns (such as OPSM)

where sequential patterns deals with inter-transaction relations.

Algorithms for mining sequential patterns employ techniques that are similar to those of

frequent itemset mining. The first algorithm, introduced by [AS95] is based, partially, on

techniques from [AS94]. Subsequent algorithms include SPADE [Zak01] (from the authors of

dEclat [ZG03]) and SPAM [AGY+02] (from the authors of MAFIA [BCG01]) which are the

current state-of-the-art algorithms, based on frequent itemset mining research.

In general, the algorithms are based on two major approaches. One is dividing the task

into sub-tasks, first finding frequent itemset in each transaction, than trying to build the chains

([AS95]). A second approach is building a search space, similar to the lexicographic tree, and

mining over this search space ([Zak01, AGY+02]). In this work we adopt an approach similar

to the second one because the basic problem (OPSM) is based on a smaller search space.

Prior work regarding frequent itemset mining and sequential pattern mining have regarded

the data as being without noise. Resent research had created a more flexible framework in which

noise in the data is allowed. In [YWY00] a noise model was introduced to allow insertion and

deletion of symbols in a repeating pattern and is further extended on [WYY01]. The algorithms

proposed were simple extension of existing algorithms without any specific efficient techniques

to accommodate noise.

1.3.3 Order Preserving Sub-Matrices (OPSM) Problem

[BDCKY02] introduced the OPSM pattern (described earlier in the introduction) and proved

that finding OPSM is NP Complete. To mine OPSM [BDCKY02] introduced a greedy heuristic

algorithm. They assume a random data model, and try to find hidden OPSM. This is done by

growing patterns and evaluating the statistical probability for every partial pattern found of

being part of the hidden OPSM.

The algorithm grows the patterns from both ends to the middle, until it reaches the needed

length. It start by selecting first and last items in the pattern, then, iteratively, it adds items.

This is done from both ends, thus keeping both end of the pattern balanced. Each iteration i

starts with the ` patterns of length i found so far, and ends with the best ` patterns of length

i + 1 found in the i-th iteration. To evaluate the best patterns [BDCKY02] introduce a scoring

model, based on the probability that the partial pattern found in the i-th iteration is in the

hidden OPSM in the dataset.

8



The probability in which the algorithm discover hidden sub-matrix within otherwise random

matrix was shown experimentally to be high. The success rate of the algorithm varies according

to the mining dataset and the number of partial patterns stored in each step (`). The complexity

of the algorithm (total run time) is O(nm3`).

9



Chapter 2

Problem Definitions

In this chapter we present the the formal definitions for the order relation patterns. We also

prove that the task of mining those patterns is hard (NP-Complete). For the definitions we

regard the gene expression datasets as matrix, where the columns are the tissues and the rows

are the genes.

2.1 Framework

Definition 2.1.1. Let D be data matrix of n×m. The Support Predicate

T (ri) →
{

true
false

is a boolean function that describe the relationship between the values in a single row (ri) of

the data matrix D.

Definition 2.1.2. Let D be data matrix of dimensions n×m. Let T be a Support Predicate.

Let support(D, T ) be the number of rows i ∈ {1, . . . , n} in which T (ri) returns true. A pattern

(defined by T ) is called frequent if support(D, T ) ≥ minsupport for some given parameter

minsupport.

2.2 Support Predicates

From the above definitions we derive many problems with different support predicates. In this

paper we shall focus on following variants:

10



Definition 2.2.1. Let π = (π1, π2, . . . , πs) be a permutation of s columns of D. The OPSM

pattern is defined by the following support predicate

Tπ(ri) = true ⇔ D(ri, π1) < D(ri, π2) < . . . < D(ri, πs).

An example of OPSM is shown in figure 2.2 (Mined from the dataset in figure 2.1)

row \ column c1 c2 c3 c4 c5 c6 c7

r1 1 3 4 0 6 2 7
r2 5 2 1 3 8 4 7
r3 9 1 8 5 7 4 3
r4 2 6 8 4 1 0 7
r5 0 1 4 8 2 6 5
r6 4 2 7 1 6 0 3
r7 6 5 1 8 0 7 3
r8 2 0 3 9 8 5 6
r9 0 3 5 9 1 7 2

Figure 2.1: Sample gene expression dataset

row \ column c5 c3 c6 c4

r5 2 4 6 8
r7 0 1 7 8
r9 1 5 7 9

Figure 2.2: Example of OPSM for pattern (t5, t3, t6, t4) : The longest pattern with support 3

Definition 2.2.2. The OPSM with Errors pattern for γ errors is defined by the following

Support Predicate

Tπ,γ(ri) = true

⇔ The sequence D(ri, π1), D(ri, π2), . . . , D(ri, πs)

contains an increasing subsequence of length s− γ

For example let r1 = {3, 4, 2, 1}, γ = 1 and π = {c1, c2, c3, c4}. The support predicate

Tπ,1(r1) = false because the longest increasing sequence is of length 2, and no increasing

subsequence of length 3 exists (I.e., with one error).

Another example of OPSM with Errors is shown in figure 2.3 (Mined from the dataset in

figure 2.1)

Definition 2.2.3. The Increasing Groups Sequence pattern is defined by the following

Support Predicate - Let θ = {θ1, . . . , θJ} be a partition of m such that
∑

i θi = m. Let G =

11



row \ column c2 c3 c7 c6 c4

r3 1 8 3 4 5
r5 1 4 5 6 8
r7 5 1 3 7 8
r8 0 3 6 5 9
r9 3 5 2 7 9

Figure 2.3: Example of OPSM with Errors for pattern (t2, t3, t7, t6, t4), γ = 1 : For each gene,
the values are increasing with the tissues, errors are marked in bold. This is the longest pattern
with support 5. Notice that for r8 more than one error marking is possible

{G1, . . . , GJ} be a column partition of T with respect to θ (I.e., ∀i|Gi| = θi) such that

∀1≤`≤JG` = {πk|
`−1∑

i=1

θi < k ≤
∑̀

p=1

θp}.

The Support Predicate

Tπ,θ(ri) = true

⇔ ∀`∀πp ∈ G`∀πk ∈ G`+1D(ri, πp) < D(ri, πk).

I.e., the permutation π is divided into J groups. The size of each group is set by θi. The

support predicate is true iff for every group G` all the values (D(ri, πp)) in the group are smaller

than all the values (D(ri, πk)) in the group G`+1.

For example, let r1 = (3, 2, 4, 5), let θ = {2, 2}, let π = {c1, c2, c3, c4}. The support predicate

Tπ,2,2(r1) = true because the following group division {3, 2} → {4, 5} defines increasing group

sequences.

Another example of Increasing Groups Sequence is shown in figure 2.4 (Mined from the

dataset in figure 2.1)

row \ column {c4 c6} {c2} { c3 c7}
r1 { 0 2 } { 3 } { 4 7 }
r4 { 4 0 } { 6 } { 9 7 }
r6 { 1 0 } { 2 } { 7 3 }

Figure 2.4: Example of Increasing Groups Sequence of size 2 as most, pattern
({t4, t6}, {t2}, {t3, t7}). The increasing order relation sequence is between the groups, and no
order is implied inside the groups.

Definition 2.2.4. The Layered Submatrices pattern is defined as follows - Let ρ be a subset

columns from D, |ρ| = s. Given partition ∆ = {∆1, . . . , ∆J} of columns in D : ∀ci∃∆j s.t.
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ci ∈ ∆j and ∀i 6= j ∆j
⋂

∆i = ∅. The Support Predicate

Tρ,∆(ri) = true

⇔ ∀`∀ρp ∈ ∆`∀ρq ∈ ∆`+1D(ri, ρp) < D(ri, ρq).

Notice that for this function the permutation π is the unit permutation as the order of the

columns is implied by ∆.

This is a special case of the Increasing Groups Sequence, where the partition is made on the

original column order (and not on the column order in the permutation).

Definition 2.2.5. Connected DAG - Allowing any Support Predicate, and searching for the

function that gives the highest support, with the following limitations -

• Every parameter in the function is in some order relation with a prior parameter (con-

nected graph).

• For every column, at most two columns prior to the current in the relation are in order

relation with the current one (graph in-degree of 2)

• For every column, the column can be in some order relation with up to two columns (graph

out-degree of 2).

For example : Tπ(ri) = D(ri, π1) < D(ri, π2), D(ri, π1) < D(ri, π3), D(ri, π4) < D(ri, π3).

See also figure 1.5 for example of the graph representation of this order relation.

Another example of Connected DAG pattern is shown in figure 2.5 (Mined from the dataset

in figure 2.1)

c5

↙ ↘
c7c3

↙ ↘
c4 c6

row \ column c5 c7 c3 c4 c6

r5 2 5 4 8 6
r7 0 3 1 8 7
r8 1 2 5 9 7

Figure 2.5: Example of Connected DAG order relation. On the left is the graph of the pattern
which implies the following order relation : c1 < t7, c1 < t3, c3 < t4 and c3 < t6. On the right
we see the corresponding genes from the dataset that support this order relation.

2.3 Mining Problems

Definition 2.3.1. The OPSM optimization problem:

13



• Input: D, minSupport

• Output: π = (π1, π2, . . . , πs) such that support(D, Tπ) ≥ minSupport and s is maximal.

Definition 2.3.2. The OPSM with Errors optimization problem:

• Input: D, minSupport, γ

• Output: π = (π1, π2, . . . , πs) such that support(D,Tπ,γ) ≥ minSupport and s is maximal.

Definition 2.3.3. The Increasing Groups Sequence optimization problem:

• Input: D, minSupport, θmax

• Output: π = (π1, π2, . . . , πs), θ = {θ1, . . . , θJ} such that support(D, Tπ,θ) ≥ minSupport,

∀jθj ≤ θmax and s is maximal.

Definition 2.3.4. The Layered Submatrices optimization problem:

• Input: D, minSupport, maxLayerDiff, ∆ = {∆1, . . . ,∆J}

• Output: ρ such that support(D, Tρ,∆) ≥ minSupport,

max(|ρ
⋂

∆1|, . . . , |ρ
⋂

∆J |)−min(|ρ
⋂

∆1|, . . . , |ρ
⋂

∆J |) ≤ maxLayerDiff

and s (size of ρ) is maximal.

Definition 2.3.5. The Connected DAG optimization problem:

• Input: D, minSupport

• Output: π = (π1, π2, . . . , πs) and Tπ connected DAG support predicate such that support(D, Tπ) ≥
minSupport and s is maximal.

2.4 Complexity

The complexity of the OPSM problem was shown to be NP-Complete in [BDCKY02].

Lemma 2.4.1. The following order relation mining tasks are NP-Complete:

• OPSM with Errors

• Increasing Groups Sequence

• Layered Submatrices

14



• Connected DAG

We will now prove the Lemma for every case.

Claim. The OPSM with Errors is NP-Complete

Proof. For γ = 0 the Partially Increasing Sequence restricts to the OPSM problem.

Claim. The Increasing Groups Sequence problem is NP-Complete

Proof. For partition θ = {θ1, . . . , θJ}, ∀iθi = 1 the problem restricts to the OPSM problem.

Claim. The Layered Submatrices problem is NP-Complete

Proof. LS: Decision Problem Let D matrix, support threshold minsupport, partition ∆ of

the columns in D, and integer k. Is there a Layered Submatrices submatrix in D ? That is, is

there set of columns ρ, —ρ=k+1— and set of rows G such that

∀ri ∈ G∀`∀ρp ∈ ∆`∀ρq ∈ ∆`+1D(ri, ρp) < D(ri, ρq)

We prove this by reduction from the balanced complete bipartite subgraph problem that is

known to be NP-Complete [Joh87] (See also [GJ79] page 196).

BG: Decision Problem Given a bipartite graph G = (V, U,E) and a positive integer k,

are there two disjoined subsets X ⊆ V ,Y ⊆ U such that |X| = |Y | = k, and for all x ∈ X, and

y ∈ Y , (x, y) ∈ E?

The Reduction BG ∝ LS Given a bipartite graph G = (V, U,E) and a positive integer k,

the matrix D = {Dij} is defined as follows: if (vi, uj) ∈ E, then Di,j = j otherwise, Di,j = −1.

We add a first column to D containing ’-1’ entries. The partition ∆ is defined ∆j = {cj} and

minimum support minsupport = k.

G contains a balanced complete bipartite subgraph of size k iff the matrix D contains layered

submatrices of size k × (k + 1):

=⇒ If G contains a balanced complete bipartite subgraph of size k, than at the same indices

we have a layered submatrix of size k × k. Note that we can extend the submatrix by the ’-1’

column to get an k × (k + 1) order preserving submatrix.

⇐= Lets assume D contains a layered submatrices B of size k× (k + 1). Note that at most

one column of B can contain a ’-1’ entry (first column), otherwise we contradict the order of the

layered submatrices order relation (every layer is of one column). Thus, D contains a k×k single

columns layered submatrices consisting of only positive numbers. This matrix corresponds to a

balanced complete bipartite graph in G (on the same indices).
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For the Connected DAG problem, we prove NP-Completeness for two instances:

• General case - As described above, connected DAG, in/out degree 2.

• Directed Binary Tree graph - Later in this work we address some specific variants of the

general case, specifically directed binary tree graph (e.g. A single root to the graph).

Claim. The General Connected DAG problem is NP-Complete

Proof. The proof is similar to the proof that OPSM is NP-Complete.

GCD: Decision Problem Let D matrix, support threshold minsupport, and integer |π| =
k. Is there a Connected DAG (in degree 2, out degree 2) pattern submatrix in D ?

We prove by reduction from the balanced complete bipartite subgraph problem that is known

to be NP-Complete [Joh87] (See also [GJ79] page 196).

BG: Decision Problem Given a bipartite graph G = (V, U,E) and a positive integer k,

are there two disjoined subsets X ⊆ V ,Y ⊆ U such that |X| = |Y | = k, and for all x ∈ X, and

y ∈ Y , (x, y) ∈ E?

The Reduction BG ∝ GCD Given a bipartite graph G = (V, U,E) and a positive integer

k define the matrix D = {Dij} as follows: if (vi, uj) ∈ E, then Di,j = j otherwise, Di,j = −1.

We add a k + 1 columns to D containing ’-1’ entries. Minimum support minsupport = k,

|π| = 2k + 1.

We show now that G contains a balanced complete bipartite subgraph of size k iff the matrix

D contains a Connected DAG submatrix of size k × (2k + 1).

=⇒ If G contains a balanced complete bipartite subgraph of size k, than at the same indices

we have a Connected DAG of size k× k (a single trail). Note that we can extend the submatrix

with the k+1 ’-1’ columns to get an k× (2k+1) connected DAG submatrix. This gives a zigzag

graph pattern with k + 1 columns of ’-1’ and k columns with positive values (see below):

O
↘

O
↙

O
↘

O
↙

O

This DAG is supported by k rows (same indices as the balanced complete bipartite sub-

graph).

⇐= Lets assume D contains a connected DAG submatrix B of size k × (2k + 1). Note that

at most k + 1 columns of B can contain ’-1’ entries, otherwise we contradict the order of the

connected DAG submatrix property (the zigzag graph is the one with the most ’-1’ columns).
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Thus, D contains a k × k single trail connected DAG submatrix consisting of only positive

numbers. This matrix corresponds to a balanced complete bipartite graph in G (at the same

indices).

Claim. The DAG Binary Tree problem is NP-Complete

Proof. The proof is similar to the proof that OPSM and Layered Submatrices are NP-Complete.

The main observation is that ’-1’ can only be in the root of the graph (’-1’ column), and the

rest of the graph forms a biclique.

BT: Decision Problem Let D matrix, support threshold minsupport and integer k. Is

there a DAG Binary Tree in D ? That is, is there a permutation π, |π| = k + 1, a DAG binary

tree support predicate Tπ and set of rows G such that ∀ri ∈ G Tπ(ri) = True.

We prove this by reduction from the balanced complete bipartite subgraph problem that is

known to be NP-Complete [Joh87] (See also [GJ79] page 196).

BG: Decision Problem Given a bipartite graph G = (V, U,E) and a positive integer k,

are there two disjoined subsets X ⊆ V ,Y ⊆ U such that |X| = |Y | = k, and for all x ∈ X, and

y ∈ Y , (x, y) ∈ E?

The Reduction BG ∝ BT Given a bipartite graph G = (V, U,E) and a positive integer k,

the matrix D = {Dij} is defined as follows: if (vi, uj) ∈ E, then Di,j = j otherwise, Di,j = −1.

We add a first column to D containing ’-1’ entries. Minimum support minsupport = k, |π| =

k + 1.

G contains a balanced complete bipartite subgraph of size k iff the matrix D contains DAG

binary tree submatrix of size k × (k + 1):

=⇒ If G contains a balanced complete bipartite subgraph of size k, than at the same indices

we have a DAG binary tree submatrix (single trail graph) of size k×k. Note that we can extend

the submatrix by the ’-1’ column to get an k × (k + 1) order preserving submatrix.

⇐= Lets assume D contains a DAG binary tree submatrix B of size k × (k + 1). Note that

at most one column of B can contain a ’-1’ entry (first column, root of the graph), otherwise

we contradict the order of the DAG binary tree order relation. Thus, D contains a k × k

submatrix consisting of only positive numbers. This submatrix corresponds to a balanced

complete bipartite graph in G (on the same indices).
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Chapter 3

Algorithm Building Blocks

In this section we describe the building blocks that make up the mining algorithms.

3.1 Search Space and Data Representation

3.1.1 Lexicographic Tree

Let < be some lexicographic order of the items in I such that for every two items i and j, i 6= j

: i < j or i > j. Every node n of the lexicographic tree has two fields, n.head which is the

itemset node n represent, and n.tail which is a list of items, possible extensions to n.head. A

node of the lexicographic tree has a level. Itemsets for nodes at level k nodes contain k items.

We also say that such itemsets have length k. The root (level 0) node n.head is empty, and

n.tail = I.

The items in the node’s tail are smaller lexicographic (i < j) from any item in the node’s

head. This can be created, for example, by the pseudo code in figure 3.1. Figure 3.2 is an

example of lexicographic tree for 3 items.

(1) newTail = sort n.tail in lexicographic order
(2) while (newTail 6= ∅)
(3) remove α from newTail
(4) α = the first item in newTail
(5) n′.head = n.head

⋃
α

(6) n′.tail = newTail

Figure 3.1: Simple lexicographic tree node creation procedure
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{ : 1 2 3 }


{ 1 : 2 3 }
 { 2 : 3 }
 { 3 : }


{ 1 2 : 3 }


{ 1 2 3 : }


{ 1 3 : }
 { 2 3 : }


Figure 3.2: Full lexicographic tree of 3 items

3.1.2 Prefix Tree

In most frequent itemset mining algorithms a Lexicographic Tree is used to describe the concep-

tual framework of the itemset lattice. However this framework may be used only if the order

of the items in the itemset has no influence. In order relation mining the ordering of the items

in the pattern changes the pattern, and therefore all combinations of items ordering must be

checked, thus we should use a Prefix Tree.

For example in frequent itemset mining the pattern ABC equals to ACB, however in order

relation mining ABC dose not equal to ACB.

Every node n of the prefix tree has two fields, n.head which is the itemset node n represent,

and n.tail which is a list of items, possible extensions to n.head. However unlike Lexicographic

Tree, items in the tail can be small than those in the head. Pseudo code in Figure 3.3 describes

the node creation.

For example see figure 3.4.

(1) foreach α in n.tail
(2) n′.head = n.head

⋃
α

(3) n′.tail = n.tail− α

Figure 3.3: Simple prefix tree node creation procedure
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Figure 3.4: Full prefix tree of 3 items

Project(p : vector, v : vector )
/* p - vector to be projected upon

v - vector being projected */
(1) t = Empty Vector
(2) i = 0
(3) for each nonzero bit in p, at offset j, in

ascending order of offsets:
(4) Set i’th bit of target vector t to be the

j’th bit of v.
(5) i = i + 1
(6) return t

Figure 3.5: Projection

3.1.3 Depth First Search Traversal

In the course of the algorithm we traverse the lexicographic tree (and prefix tree) in a depth-first

order. In lexicographic tree at node n, for every element α in the node’s tail, a new node n′

is generated such that n′.head = n.head
⋃

α and n′.tail = n.tail− α. After the generation and

traversal of n′, α is removed from n.tail, as it is no longer needed (see Figure 3.6). In prefix

tree traversal α is not removed from n.tail, those creating the full prefix tree (see Figure 3.7).

Several pruning techniques, on which we elaborate later, are used in order to speed up this

process.
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DFS(n : node,)
(1) t = n.tail
(2) while t 6= ∅
(3) Let α be the first item in t
(4) remove α from t
(5) n′.head = n.head

⋃
α

(6) n′.tail = t
(7) DFS(n′)

Figure 3.6: Simple DFS - Lexicographic Tree

DFS-Prefix(n : node,)
(1) t = n.tail
(2) foreach α in t
(3) n′.head = n.head

⋃
α

(4) n′.tail = t− α
(5) DFS-Prefix(n′)

Figure 3.7: Simple DFS - Prefix Tree

3.1.4 Vertical Sparse Bit-Vectors

Comparison between horizontal and vertical database representations done in [SHS+00] shows

that the representation of the database has high impact on the performance of the mining

algorithm. In a vertical database the data is represented as a list of items, where every item

holds a list of transactions in which it appears.

The list of transactions held by every item can be represented in many ways. In [Zak00]

the list is a tid-list, while [SHS+00, BCG01] use vertical bit vectors. Because the data tends to

be sparse, vertical bit vectors hold many “0” entries for every “1”, thus wasting memory and

CPU for processing the information. In [SHS+00] the vertical bit vector is compressed using an

encoding called skinning which shrinks the size of the vector.

We choose to use a sparse vertical bit vector. Every such bit vector is built from two arrays

- one for values, and one for indexes. The index array gives the position in the vertical bit

vector, and the value array is the value of the position, see Figure 3.12. The index array is

sorted to allow fast AND operations between two sparse bit vectors in a similar manner to the

INTERSECT operation between the tid-lists. Empty values are thrown away during the AND
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Apriori(n : node, minsupport : integer)
(1) t = n.tail
(2) while t 6= ∅
(3) Let α be the first item in t
(4) remove α from t
(5) n′.head = n.head

⋃
α

(6) n′.tail = t
(7) if (support(n′.head) ≥ minsupport)
(8) Report n′.head as frequent itemset
(9) Apriori(n′)

Figure 3.8: Apriori

operation, save space and computation time.

Counting and support

To count the number of ones within a sparse bit vector, one can hold a translation table of

2w values, where w is the word length. To count the number of ones in a word requires only

one memory access to the translation table. This idea first appeared in the context of frequent

itemsets in [BCG01].

3.2 Pruning and Optimization

To improve performance of the algorithms some pruning and optimization techniques are used.

Not all the techniques can be used for both Prefix trees and Lexicographic trees, if so it is stated

in which search space the technique works.

3.2.1 Previous Techniques

Apriori

Proposed by [AS94] the Apriori pruning technique is based on the monotonicity property of

support: support(P ) ≥ support(PX) as PX is contained in less transactions than P . Therefore

if for an itemset P , support(P ) < minsupport, the support of any extension of P is also lower

than minsupport, and the subtree rooted at P can be pruned from the search space. See Figure

3.8 for pseudo code (demonstrated on Lexicographic Tree)..
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PEP(n : node, minsupport : integer)
(1) t = n.tail
(2) while t 6= ∅
(3) Let α be the first item in t
(4) remove α from t
(5) n′.head = n.head

⋃
α

(6) n′.tail = t
(7) if (support(n′.head) = support(n.head))
(8) add α to the list of items removed by

PEP
(9) else if (support(n′.head) ≥ minsupport)
(10) Report n′.head

⋃{All subsets of items
removed by PEP} as frequent itemsets

(11) PEP(n′)

Figure 3.9: PEP

Dynamic Reordering

To increase the chance of early pruning, nodes are traversed, not in lexicographic order, but in

order determined by support. This technique was introduced by [Jr98].

Instead of lexicographic order we reorder the children of a node as follows. At node n, for all

α in the tail, we compute sα = support(t.head
⋃

α), and sort the nodes by sα in an increasing

order. Items α in n.tail for which support(t.head
⋃

α) < minsupport are trimmed away. This

way, the rest of the sub-tree benefits from a shortened tail. Items with smaller support, which

are heuristically “likely” to be pruned earlier, are traversed first. See Figure 3.10 for pseudo

code.

Dynamic reordering can be used only with Lexicographic Tree. In Prefix Tree the depth of

each node is the same and dynamic reordering have no influence in terms of early pruning.

3.2.2 New General Tools introduced here

Groups Pruning

We introduce this pruning step in the group sequence algorithm. Consider a sequence s =

(s, {i`}) at some node and suppose it sequence-extends include sa = (s′, {i`, ik}) and sb =

(s′, {i`}, {ik}). If sa is not frequent then sb is not frequent.

This pruning step is specific to the group sequence problem and can not be used for the

sequential patterns problem in the manner we introduced it.
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DynamicReordering(n : node, minsupport : integer)
(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃
α)

(4) Sort items α in t by sα in ascending order.
(5) while t 6= ∅
(6) Let α be the first item in t
(7) remove α from t
(8) n′.head = n.head

⋃
α

(9) n′.tail = t
(10) if (support(n′.head) ≥ minsupport)
(11) Report n′.head as frequent itemset
(12) DynamicReordering(n′)

Figure 3.10: Dynamic Reordering

Preprocessing (OR2 Matrix)

Fast checking of the support is crucial for a successful generate-and-test algorithm. To enable

fast support checking we create m×m matrix of all 2-items Order Relation (OR2 Matrix). For

every entry (ci, cj) we create a bit vector L of length n as follows :

L
ci,cj
g =





0 Dg,i ≤ Dg,j

1 otherwise

Therefore (for simple increasing sequence) support(ci, cj) = number of ’1’s in Lci,cj . We use

this matrix to generate patterns and check their support by holding a vertical bit vector for each

pattern, representing the genes supporting the pattern, and to add new items to the pattern we

use the relevant bit vector.

3.3 AIM-F Specific Optimizations

This section describes specific techniques used only for AIM-F and not relevant for any of the

other algorithms. The AIM-F pseudo code is described in figure 3.11.
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AIM-F(n : node, minsupport : integer)
/* Uses DFS traversal of prefixlexicographic itemset tree

Fast computation of small frequent itemsets
for sparse datasets
Uses difference sets to compute support
Uses projection and bit vector compression
Makes use of parent equivalence pruning
Uses dynamic reordering */

(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃
α)

(4) if (sα = support(n.head))
(5) add α to the list of items removed by PEP
(6) remove α from t
(7) else if (sα < minsupport)
(8) remove α from t
(9) Sort items in t by sα in ascending order.
(10)While t 6= ∅
(11) Let α be the first item in t
(12) remove α from t
(13) n′.head = n.head

⋃
α

(14) n′.tail = t
(15) Report n′.head

⋃{All subsets of items
removed by PEP} as frequent itemsets

(16) AIM-F(n′)

Figure 3.11: AIM-F

3.3.1 Previous Techniques

Bit-vector projection

In [BCG01], a technique called projection was introduced. Projection is a sparse bit vector

compression technique specifically useful in the context of mining frequent itemsets. The idea

is to eliminate redundant zeros in the bit-vector - for itemset P , all the transactions which does

not include P are removed, leaving a vertical bit vector containing only 1s. For every itemset

generated from P (a superset of P ), PX, all the transactions removed from P are also removed.

This way all the extraneous zeros are eliminated.

The projection done directly from the vertical bit representation. At initialization a two

dimensional matrix of 2w by 2w is created, where w is the word length or some smaller value

that we choose to work with. Every entry (i,j) is calculated to be the projection of j on i (thus
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Figure 3.12: Sparse Bit-Vector data structure

covering all possible projections of single word). For every row of the matrix, the number of

bits being projected is constant (a row represents the word being projected upon).

Projection is done by traversing both the vector to project upon, p, and the vector to be

projected, v. For every word index we compute the projection by table lookup, the resulting

bits are then concatenated together. Thus, computing the projection takes no longer than the

AND operation between two compressed vertical bit lists.

In [BCG01] projection is used whenever a rebuilding threshold was reached. Our tests show

that because we’re using sparse bit vectors anyway, the gain from projection is smaller, and the

highest gains are when we use projection only when calculating the 2-itemsets from 1-itemsets.

This is also because of the penalty of using projection with diffsets, as described later, for large

k-itemsets. Even so, projection is used only if the sparse bit vector shrunk significantly - as a

threshold we set 10% - if the sparse bit vector contains less than 10% of ’1’s it will be projected.

Diffsets

Difference sets (Diffsets), proposed in [ZG03], are a technique to reduce the size of the inter-

mediate information needed in the traversal using a vertical database. Using Diffsets, only

the differences between the candidate and its generating itemsets is calculated and stored (if

necessary). Using this method the intermediate vertical bit-vectors in every step of the DFS

traversal are shorter, this results in faster intersections between those vectors.

Let t(P ) be the tidset of P . The Diffset d(PX) is the tidset of tids that are in t(P ) but not

in t(PX), formally : d(PX) = t(P ) − t(PX) = t(P ) − t(X). By definition support(PXY ) =

support(PX)−|d(PXY )|, so only d(PXY ) should be calculated. However d(PXY ) = d(PY )−
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Figure 3.13: Diffset threshold

d(PX) so the Diffset for every candidate can be calculated from its generating itemsets.

For the sequence mining problems Diffsets can not be used, as the basic is now d(PX) =

t(P ) − t(PX) 6= t(P ) − t(X), and therefore d(PXY ) 6= d(PY ) − d(PX) (as the order relation

of Y and X not considered).

Diffsets have one major drawback - in datasets, where the support drops rapidly between

k-itemset to k+1-itemset then the size of d(PX) can be larger than the size of t(PX) (For

example see figure 3.13). In such cases the use of diffsets should be delayed (in the depth of

the DFS traversal) to such k-itemset where the support stops the rapid drop. Theoretically

the break even point is 50%: t(PX)
t(P ) = 0.5, where the size of d(PX) equals to t(PX), however

experiments shows small differences for any value between 10% to 50%. For this algorithm we

used 50%.

Parent Equivalence Pruning (PEP)

This is a pruning method based on the following property : If

support(P ) = support(PX) then all the transactions that contain P also contain PX. Thus,

X can be moved from the tail to the head, thus saving traversal of P and skipping to PX.

This method was described by [BCG01, Zak00]. Later when the frequent items are generated

the items which were moved from head to tail should be taken into account when listing all

frequent itemsets. For example, if k items were pruned using PEP during the DFS traversal of

frequent itemset X then the all 2k subsets of those k items can be added to X without reducing

the support. This gives creating 2k new frequent itemsets. See Figure 3.9 for pseudo code.

This can not be used for sequence mining as the relation between the extending item must

be checked. For example support(P ) = support(PX) and yet PY can be frequent and PXY

not, and the relation of XY must be checked.
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Optimized Initialization (F2 Matrix)

In sparse datasets computing frequent 2-itemsets can be done more efficiently than than by

performing
(
m
2

)
itemset intersections. We use a method similar to the one described in [Zak00]:

as a preprocessing step, for every transaction in the database, all 2-itemsets are counted and

stored in an upper-matrix of dimensions m ×m. This step may take up to O(m2) operations

per transaction. However, as this is done only for sparse datasets, experimentally one sees that

the number of operations is small. After this initialization step, we are left with frequent 2 item

itemsets from which we can start the DFS procedure.

3.3.2 New General Tools introduced here

Diffsets and Projection

Never before Diffsets and Projection were used together. As d(PXY ) is not a subset of d(PX),

Diffsets cannot be used directly for projection. Instead, we notice that d(PXY ) ⊆ t(PX)

and t(PX) = t(P ) − d(PX). However d(PX) is known, and t(P ) can be calculated in the

same way. For example t(ABCD) = t(ABC) − d(ABCD), t(ABC) = t(AB) − d(ABC),

t(AB) = t(A) − d(AB) thus t(ABCD) = t(A) − d(AB) − d(ABC) − d(ABCD). Using this

formula the t(PX) can be calculated using the intermediate data along the DFS trail. As the

DFS goes deeper, the penalty of calculating the projection is higher.
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Chapter 4

Mining Algorithms for Order

Relations

In this chapter we show how to combine building blocks described in the previous chapter to

create the order relation mining algorithms. Later we analyze the complexity per output of

every algorithm.

4.1 Problem Algorithms

4.1.1 OPSM

For the OPSM algorithm we used the prefix tree DFS traversal, as the order of traversal create

different patterns (e.g. the pattern (c1, c2, c3) differs from (c1, c3, c2)). Given a pattern (s, ci) and

a new column cj the support is calculated by performing bitwise AND : Ls,ci,cj = Ls,ci
⋂

Lci,cj ,

and count the ’1’s in the new vector. The DFS traversal is pruned by the Apriori pruning

technique.

The mining algorithm is described in the pseudo code in figure 4.1

4.1.2 OPSM with Errors

The support predicate Tγ returns true if the given pattern contains an increasing sequence of

length s−γ. This task can be achieved by searching the longest increasing subsequence (LIS) in

the given pattern, and check that the longest increasing subsequence is at least s− γ in length.

An important observation is that the apriori property holds in OPSM with errors: if the

longest increasing subsequence of pattern P in row i is |P |−γ−1 then any extension P ′ = P ∪α

contain longest increasing subsequence no longer than |P | − γ = |P ′| − γ − 1. If no sequence
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OPSM(n : node, minsupport : integer)
/* Uses DFS traversal of prefix itemset tree

Uses bit vector compression
Makes use of Apriori pruning
*/

(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃
α) using F2

(4) if (sα < minsupport)
(5) remove α from t
(6) for each α in t
(7) n′.head = n.head

⋃
α

(8) n′.tail = t− α
(9) Report n′.head as OPSM
(10) OPSM(n′)

Figure 4.1: OPSM Algorithm

of length |P | − γ − 1 exist for a certain pattern, then in |P ′| no new valid sequence is created

(number of errors is monotone). Therefor support(P ) ≥ support(PX) and the apriori property

holds.

For calculating the longest increasing subsequence we used dynamic programming technique

with complexity O(s · γ).

We used this for two reasons: (a) It is incremental - if we have calculated for P , then

calculation for an extension P ′ takes γ steps and (b) the algorithm suits vertical bit vectors

implementation (With bit vectors extension take γ2 steps).

In [BS00] similar algorithm for finding longest increasing subsequence in time O(n lg lg n)

was presented, using efficient data structures. However in practice the algorithm we use is faster

for this case because of the low values of γ, and the low constant as we use compressed bit vector

( 1
w ).

We transform the problem into a graph, and run the algorithm on the graph. Given a series

D(ri, π1), D(ri, π2), . . . , D(ri, πs) for each row i we build the following directed graph Gi(Vi, Ei)

:

• Vi = {vj | D(ri, πj)}

• Ei = {(vk, v`) | D(ri, πk) < D(ri, π`)
∧

k < ` < k + γ + 1}.
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Figure 4.2: Longest Increasing Sequence Graph s = 5 γ = 1

Lemma 4.1.1. The series D(ri, π1), D(ri, π2), . . . , D(ri, πs) contains a longest increasing sub-

sequence of length r ≥ s − γ or more iff the graph Gi(Vi, Ei) contains a direct path of length

r ≥ s− γ.

The proof is in Appendix A.

The longest path algorithm: The algorithm for finding the longest path is based on two

phases:

• Building Phase: Move from v1 to vs and mark each node as follows: If no edge is pointed

to the vertex, mark the vertex with ’1’, otherwise, from all the edges pointing to the

vertex, select the edge originating from a vertex with the highest marking, add 1 and set

this mark on the current vertex.

• Search Phase: Move from vs−γ to vs, check the marking of each vertex and return the

highest marking. If this marking is greater or equal then s−γ this is the longest increasing

subsequence, otherwise no increasing subsequence of length s− γ exists.

Lemma 4.1.2. The longest path algorithm returns the length of the longest directed path in the

graph of length s− γ or more, and returns no result if no such path exists.

The proof is in Appendix A.

See figure 4.2 for example of the graph created, the marking in the vertexes after running

the algorithm.

The implementation details: Every node in the graph now holds γ vertical bit vectors. The

bit vectors holds the support for every possible number of errors (i.e. L0 holds the genes support

the pattern with 0 errors, L1 with one error, and so on until Lγ). The calculation of a new node

(Building Phase) is described in Figure 4.3. The calculation of the support (Search Phase) is

described in Figure 4.4. The rest of the algorithm remains the same as in OPSM (Figure 4.5).
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Errors-CreateNode(n : node, α : item, t : tail)
(1) n′.head = n.head

⋃
α

(2) n′.tail = t− α
(3) n′.parent = n
(4) Let β be the last item in n.head
(5) n′.L0 = n.L0BitwiseAND L(β,α)

(6) for loopMistakes = 1 to γ

(7) noNewErrors = L(β,α)BitwiseAND n.LloopMistakes
(8) newErrors = noNewErrors
(9) upwardCount = 1
(10) upwardTraversal = n.parent
(11) while loopMistakes− upwardCount ≥ 0
(12) Let δ be the last item in upwardTraversal.head
(13) upwardErrors = L(δ,α) BitwiseAND upwardTraversal.LloopMistakes−upwardCount

(14) newError = newError BitwiseOR upwardErrors
(15) upwardTraversal = upwardTraversal.parent
(16) upwardCount = upwardCount + 1
(17) n′.LloopMistakes = newErrors
(18)return n’

Figure 4.3: Node creation function with errors

4.1.3 Increasing Groups sequence

For the increasing groups sequence algorithm we used the prefix tree DFS traversal, as the

order of traversal create different patterns (e.g. the pattern ({c1}, {c2}, {c3}) differs from

({c1}, {c3}, {c2})). Given a pattern (. . . , {. . . , ci}) and a new column cj , two new patterns

are generated - (. . . , {. . . , ci, cj}) and (. . . , {. . . , ci}, cj) (Considering the restrictions of group

length). The support is calculated by performing bitwise AND between the new column cj and

all the tissues in the preceding group, and then preforming AND with the pattern bit vector.

This support function pseudo code described in Figure 4.6. The DFS traversal is pruned by the

Apriori pruning technique, and groups pruning. See figure 4.7.

4.1.4 Layers sequence

This special case of groups sequence can be mined much faster than the general case of the

Increasing Groups sequence. This due the fact that the tissues in every groups (Layers) are

known a priori. For that reason when examining each item the group of the item is known, and

it dose not matter in what order the items where selected to the sequence. Instead of Prefix
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Errors-Support(n : node)
(1) currentSupportVector = n.Lγ

(2) upwardTraversal = n.parent
(3) for upward = 1 to γ
(4) currentSupportVector = currentSupportVector BitwiseOR upwardTraversal.Lγ−upward
(5) upwardTraversal = upwardTraversal.parent
(6) return currentSupportVector.CountElements()

Figure 4.4: Support Calculation function with errors

OPSM-with-Errors(n : node, minsupport : integer)
/* Uses DFS traversal of prefix itemset tree

Uses bit vector compression
Makes use of Apriori pruning
*/

(1) t = n.tail
(2) for each α in t
(3) n’ = Errors-CreateNode(n, α, t)
(4) Compute sα = Errors-Support(n’)
(5) if (sα < minsupport)
(6) remove α from t
(7) else
(8) Report n′.head as OPSM with Errors
(9) OPSM-with-Errors(n′)

Figure 4.5: OPSM with Errors Algorithm

Tree traversal the space can be traversed in Lexicographic Order which is much smaller (and

can be pruned earlier with dynamic reordering).

4.1.5 Connected DAG

In OPSM a single item from the tail is appended to the head. In connected DAG the algorithm

creates 2s new nodes by adding the item from the tail, before and after every item in the

head. Calculates every time the bit vector of those two items in each order, and perform AND

operation with the bit vector of the parent node. There is no need to save the actual ordering

of items in the resulting node (only for later printing reasons). Our algorithm does not create

DAG that contains circle in the underlying undirected graph. See figure 4.8. In addition to
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IncreasingGroups-Support(n : node, α : item, IsNewGroup: boolean)
(1) CurrentGroup = last item in n.groups
(2) if a new group is NOT opened decrease CurrentGroup by 1
(3) foreach β in n.head for which the n.groups value is CurrentGroups
(4) GroupsBitVector = BitwiseAND of all those L(β,α)

(5) L′ = n.L BitwiseAND GroupBitVector
(6) return L′.CountElements()

Figure 4.6: Increasing Groups Sequence support function

the code in the figure, there is a array to prevent each item to have an in-degree or out-degree

greater than 2.

4.2 Complexity per output

As shown in the OPSM and variants are NP-Complete. In the following section we analyze

the complexity per output result. The summary of the complexity is in the following table

(Excluding preprocessing):

Problem Complexity per output Details

OPSM O(mn)

OPSM with Errors O(mγ+1(γ + 1)2n) γ - Number of Errors allowed

Increasing Groups O(mqn) ≤ O(m2n) q - Maximal group size

Layered Submatrices O(mqn) ≤ O(m2n) q - Maximal layer size

Connected DAG O(msn) ≤ O(m2n) s - Longest pattern found

4.2.1 Common preprocessing

The first step, calculation of OR2 matrix, is common for all variants of the order relations. In

this step, for every two columns combination, for each row we calculate which column is greater,

therefor this step takes O(nm2).

4.2.2 OPSM

After preprocessing, each node in the search tree is traversed by the algorithm if it has a support

greater than minsupport, or the parent of that node has such support. Because the degree of

the search space is m, for each node with minsupport the algorithm traverse another m nodes.
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IncreasingGroupsSequence(n : node, minsupport : integer)
/* Uses DFS traversal of prefix itemset tree

Uses bit vector compression
Makes use of Apriori pruning
*/

(1) t = n.tail
(2) for each α in t
(3) Loop twice, once appending α to the last group, and once opening a new group.
(4) sα = IncreasingGroupsSupport(n,α, is opening new groups)
(5) if (sα < minsupport)
(6) remove α from t, skip opening new group if current loop is group appending
(7) else
(8) n′.head = n.head

⋃
α

(9) n′.tail = t− α
(10) CurrentGroup = last item in n.groups
(11) if a new group is opened increase CurrentGroup by 1
(12) n′.groups = n.groups

⋃
CurrentGroup

(13) Report n′.head as Increasing Groups Sequence
(14) IncreasingGroupsSequence(n′)

Figure 4.7: Increasing Groups Sequence

Traversing a node means building the node itself by adding a new item, and calculating the

support, in n 1
w time (performing an AND operation between 2 bit-vectors). As the pattern

becomes longer the AND operation is performed faster because the spared vertical bit-vectors

become shorter. This however has no impact on the complexity as the longer bit-vector in the

AND operation is the bit-vector of the new column added to the pattern. Overall, we get O(mn)

per output result.

4.2.3 OPSM with Errors

There are two differences between the mining of OPSM and OPSM with Error : (a) Calculating

the support is more complex and (b) the search space is larger. Regarding (b), now the number

of possible infrequent children that should be traversed is mγ+1. The calculation of the support,

explained in details in previous section, takes O(nγ2) time, and the complexity per output result

is O(mγ+1(γ + 1)2n)

35



ConnectedDAG(n : node, minsupport : integer)
/* Uses DFS traversal of prefix itemset tree

Uses bit vector compression
Makes use of Apriori pruning
*/

(1) t = n.tail
(2) for each α in t
(3) for each β in n.head run twice - α < β and α > β
(4) Compute sα = support(n.head

⋃
α) using F2,

comparing with β using L(β,α) or L(α,β)

(5) if (sα ≥ minsupport)
(6) n′.head = n.head

⋃
α

(7) n′.tail = t− α
(8) Report n′.head as Connected DAG
(9) ConnectedDAG(n′)
(10) if no pattern using α found remove α from t

Figure 4.8: Connected DAG Algorithm

4.2.4 Increasing Groups sequence

The differences between this variant and the original problem are (a) the search space and (b)

calculation of the support. As for (a) the degree of the tree is 2m because every item added can

be added to the last group, or can create a new group. This does not change the complexity,

but in practice it increases run time. On the other hand calculating the support increases

the complexity as the new item support must be check not only with the last item as in the

increasing sequence, but with every item in the last group, and therefor calculating the support

take now O(qn) (q if the length of the longest allowed group) time, and the complexity per

output result is O(mqn) ≤ O(m2n)

4.2.5 Layered Submatrices

Although the search space is much smaller than the search space of Increasing Groups sequence

(Lexicographic tree vs. Prefix tree), the complexity analysis remains the same.

4.2.6 Connected DAG

The difference between this variation and the original problem is the search space, as in the

increasing sequence problem the degree of the search tree was m), and here the degree of the
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search tree is 2ms (s is the length of the longest pattern, and therefor bounded by m) because

the new item can be added not only in the end of the sequence but at any given position, before

or after every item. Calculating the support remains the same, and the complexity per output

result is O(msn) ≤ O(m2n)
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Chapter 5

Frequent Itemset Mining

Experimental Results

The experiments were conducted on an Athlon 1.2Ghz with 256MB DDR RAM running Mi-

crosoft Windows XP Professional. All algorithms were implemented in C++. AIM-F was

compiled using VC 7 (2002).

5.1 Data sets

For general comparison of the data representation we used standard datasets from the data

mining community: We used five datasets to evaluate the algorithms performance. Those

datasets where studied extensively in [Zak00].

1. connect — A database of game states in the game connect 4.

2. chess — A database of game states in chess.

3. mushroom — A database with information about various mushroom species.

4. pumsb* — This dataset was derived from the pumsb dataset and describes census data.

5. T10I4D100K - Synthetic dataset.

The first 3 datasets were taken from the UN Irvine ML Database Repository

(http://www.ics.uci.edu/ mlearn/MLRepository). The synthetic dataset created by the IBM

Almaden synthetic data generator

(http://www.almaden.ibm.com/cs/quest/demos.html).
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5.2 Comparing Data Representation

We compare the memory requirements of sparse vertical bit vector (with the projection described

earlier) versus the standard tid-list. For every itemset length the total memory requirements of

all tid-sets is given in figures 5.1, 5.2 and 5.3.

Figure 5.1: Chess - support 2000 (65%)

As follows from the figures, sparse vertical bit vector representation requires less mem-

ory than tid-list for the dense datasets (chess, connect). However for the sparse dataset

(T10I4D100K) the sparse vertical bit vector representation requires up to twice as much memory

as tid-list. Tests to dynamically move from sparse vertical bit vector representation to tid-lists

showed no significant improvement in performance, however, this should be carefully verified in

further experiments.

Gene expression datasets, after the F2 step, are dense (nearly 50of the item are ’1’s) therefore

sparse bit vectors yield better memory usage than tid-lists.

5.2.1 Comparing The Various Optimizations

We analyze the influence of the various optimization techniques on the performance of the

algorithm. First run is the final algorithm on a given dataset, then returning on the task, with

a single change in the algorithm. Thus trying to isolate the influence of every optimization
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Figure 5.2: Connect - support 50000 (75%)

technique, as shown in figures 5.4 and 5.5.

As follows from the graphs, there is much difference in the behavior between the datasets. In

the dense dataset, Connect, the various techniques had tremendous effect on the performance.

PEP, dynamic reordering and diffsets behaved in a similar manner, and the performance im-

provement factor gained by of them increased as the support dropped. From the other hand the

sparse bit vector gives a constant improvement factor over the tid-list for all the tested support

values, and projection gives only a minor improvement.

In the second figure, for the sparse dataset T10I4D100K, the behavior is different. PEP gives

no improvement, as can expected in sparse dataset, as every single item has a low support, and

does not contain existing itemsets. There is drop in the support from k-itemset to k+1-itemset

due to the low support therefore diffset also gives no impact, and the same goes for projection.

A large gain in performance is made by optimized initialization, however the performance gain

is constant, and not by a factor. Last is the dynamic reordering which contributes to early

pruning much like in the dense dataset.
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Figure 5.3: T10I4D100K - support 100 (0.1%)

5.3 Comparing Frequent Itemset Mining algorithms

We first compare the base algorithm on which we build (AIM-F) with other frequent itemset

mining algorithms.

For comparison, we used implementations of

1. Apriori [AS94] - horizontal database, BFS traversal of the candidates tree.

2. FPgrowth [HPY00] - tree projected database, searching for frequent itemsets directly

without candidate generation, and

3. dEclat [Zak00] - vertical database, DFS traversal using diffsets.

All of the above algorithm implementations were provided by Bart Goethals

(http://www.cs.helsinki/u/goethals/) and used for comparison with the AIM-F implementa-

tion.

Figures 5.6 to 5.10 gives experimental results on the various algorithms and datasets. Not

surprising, Apriori [AS94] generally has the lowest performance amongst the algorithms com-

pared, and in some cases the running time could not be computed as it did not finish even at the

highest level of support checked. For these datasets and compared with the specific algorithms
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Figure 5.4: Influence of the various optimization on the Connect dataset mining

Figure 5.5: Influence of the various optimization on the T10I4D100K dataset mining
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Figure 5.6: Chess dataset

and implementations described above, our algorithm/implementation, AIM-F , seemingly out-

performs all others.

In general, for the dense datasets (Chess, Connect, Pumsb* and Mushroom, figures 5.6,5.7,5.8

and 5.9 respectively), the sparse bit vector gives AIM-F an order of magnitude improvement

over dEclat. The diffsets gives dEclat and AIM-F another order of magnitude improvement

over the rest of the algorithms.

For the sparse dataset T10I4D100K (Figure 5.10), the optimized initialization gives AIM-F
head start, which is combined in the lower supports with the advantage of the sparse vertical

bit vector (See details in figure 5.5)
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Figure 5.7: Connect dataset

Figure 5.8: Pumsb* dataset
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Figure 5.9: Mushroom dataset

Figure 5.10: T10I4D100K dataset
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Chapter 6

Order Relations Experimental

Results

The experiments were conducted on an Athlon 1.2Ghz with 256MB DDR RAM running Mi-

crosoft Windows XP Professional. All algorithms were implemented in C#. Experiments were

conducted with .NET Framework 1.0.

6.1 Data sets

The gene expression datasets used are real-life gene expression databases used, some where

normalized by [LL02]:

• Breast cancer tumor dataset from [HDC+01], n = 3226 genes, m = 22 tissues : 8 with

brca1 mutations, 8 with brca2 mutations, and 6 sporadic breast tumors.

• Colon cancer tumor dataset from [ABN+99], n = 2000 genes, m = 62 tissues : 40 tumor

biopsies, 22 normal biopsies. The 2000 genes where selected from the original paper by

[LL02] according to the confidence in the results.

• MLL Leukemia samples from [ASS+02], n = 12582 genes, m = 57 tissues (train group) :

20 ALL, 17 MLL and 20 AML.

• AML-ALL Leukemia dataset from [GSPT+99], n = 7129 genes, m = 38 tissues (train

group) : 27 ALL, 11 AML.

• Central Nervous System Embryonal Tumor data set from [SPM+02], n = 7129 genes,

m = 60 tissues. The dataset is dataset C mentioned in the paper, of the tissues, 21 belong
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Figure 6.1: Running various order relation algorithms on the Breast Cancer dataset - Run time

to survivors, and 39 belong to patients who succumbed to their disease.

6.2 Experiments

The experiments were conducted as follows - for every pattern length, the pattern with the

highest support was found. Later a mining task for that specific pattern was run to calculate

the running time.

In figure 6.1 there is a comparison of the running times for all algorithms (Figure 6.2 shows

the pattern size found at each of those runs). The dataset is the breast cancer dataset. The

algorithms parameters selected were as follows:

• OPSM with Errors - γ = 1.

• Increasing Groups Sequence - All groups are equal in size, and set to 2.

• Layered Submatrices - 3 Layers (Normal, BRCA1, BRCA2).

From this graph it is clear that the problem of finding layered submatrices is by far the

“easiest”. This was expected as the layered submatrices is the only pattern, of those presented

here, that could be mined using the lexicographic tree. All other pattern’s algorithms are more

than order of magnitude slower.
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Figure 6.2: Running various order relation algorithms on the Breast Cancer dataset - Support

All further graphs in this section are support graph - the X-Axis is the length of the pattern

and the Y-Axis is the support, as percentage of the dataset size (number of genes). The graphs

show for each pattern length, the pattern with the highest support found.

In appendix B we show patterns found during mining of the breast cancer dataset.

6.2.1 OPSM

In figure 6.3 we compare the maximal support level of each pattern size found. Except the

Colon Tumor dataset, all other dataset behaved in similar manner. In [BDCKY02] the reported

run time was about 30 seconds for OPSM of length 4 for the breast cancer dataset. The running

time of our algorithms for the breast cancer dataset is less than a second for OPSM of length

5 or less. The quality of the results in our algorithm (which promise to return the exact result)

is also superior. The results (The support of pattern with the highest support):

Algorithm \ Pattern Length 4 6 8

[BDCKY02] 347 42 7

Our 772 127 18

As the algorithm in [BDCKY02] is heuristical the differences between the best pattern

found may vary from dataset to dataset. Also, changing the size of the window (the number
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Figure 6.3: Order Preserving Submatrices for various gene expression datasets

of patterns held in each iteration) has a major effect on the results found by this algorithm.

Here we compare with results reported by [BDCKY02]. Increasing the window size, will result

in better results (and longer running time).

6.2.2 OPSM with Errors

OPSM with Errors algorithm was run on two datasets: Breast Cancer dataset (Figure 6.4) and

the Colon Tumor dataset (Figure 6.5). For each dataset we ran two series of experiments, once

with 1 error allowed, and once with 2 errors. In each graph we also present the OPSM result

to compare with. As seen in both figure, allowing more errors in the pattern results in longer

patterns with higher support.

6.2.3 Increasing Groups Sequence

Increasing Groups Sequence algorithm was run on two datasets: Breast Cancer dataset (Figure

6.6) and the Colon Tumor dataset (Figure 6.7). For each dataset we ran two series of experi-

ments, once with groups of size 2, and once with groups of size 3. In each graph we also present

the OPSM result to compare with. Again, as in the case of OPSM with errors, longer groups

result in longer patterns with higher support. The reason is that unlike OPSM in which every
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Figure 6.4: Breast Cancer Order Preserving Submatrices with Errors Allowed

Figure 6.5: Colon Tumor Order Preserving Submatrices with Errors Allowed
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Figure 6.6: Breast Cancer Order Preserving Submatrices with groups of tissues

column is in order with all others (transitive), in increasing groups sequence the order relation

is weaker. This result in more rows supporting every patterns.

6.2.4 Layered Submatrices

For the layered submatrices the breast cancer dataset was divided to 3 groups: Normal, BRCA1

and BRCA2. We have limited the patterns to balanced layers - the layers must be in the same

size (±1). The results are shown in the prefix of this section (Figure 6.2).

6.2.5 Connected DAG

First few runs of the algorithm produced a zigzag graph:

O
↘

O
↙

O
↘

O
↙

O

The reason is that such graph implies the least number of constraints between the tissues.

For example OPSM pattern of length s, π = (π1, . . . , πs) implies the following constrains:
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Figure 6.7: Colon Tumor Order Preserving Submatrices with groups of tissues

π2 : π1 < π2

π3 : π1 < π3 π2 < π3

π4 : π1 < π4 π2 < π4 π3 < π4

. . .

Total of s2

2 constraints. On the other hand, a zigzag graph implies only s − 1 constraints

(which is the minimal number for a connected DAG, trivial to prove). For that reason further

tests were done under a more limited schema - binary tree pattern.

Under the tree pattern limit the resulting patterns were balanced trees. The reason for

balanced trees is that balanced tree contains the least constraint of all trees. The number of

constraints for a balanced tree (assuming a full tree) is

log s−1∑

i=1

i2i = 1 · 21 + 2 · 22 + 3 · 23 + . . .

Claim. Balanced binary tree pattern implies the least constraints of all binary tree patterns.

Proof. (Sketch) In a tree, each level implies a certain number of constraints (1st level zero, 2nd

level one, 3rd level two and so on). If we compare a balanced to any non-balanced tree, and

create a difference set of nodes. The nodes can be put in pairs such that every tree node in
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difference set from the non-balanced tree have a pair from the balanced tree which implies less

constrains (less deeper in the tree).
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Chapter 7

Future Work

Optimizations : We have used some current state-of-the-art techniques for frequent itemset

mining to mine the patterns described in the paper. Any other technique that would

adapted could bring an order of magnitude improvement. One other problem with the

algorithms described in this paper is they assume the dataset can reside in the main

memory. Development of out-of-core algorithms will create an opportunity for mining

those patterns on much larger datasets.

New Pattern : So far, in all the patterns we have shown, we ignored the values of the gene

expression (after found the 2-items order). For example a pattern where we allow errors

of size ε.
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Appendix A

Longest Increasing Subsequence

We transform the problem sequence into a graph, and run the algorithm on the graph. Given

a series D(ri, π1), D(ri, π2), . . . , D(ri, πs) for each row i we build the following directed graph

Gi(Vi, Ei) :

• Vi = {vj | D(ri, πj)}

• Ei = {(vk, v`) | D(ri, πk) < D(ri, π`)
∧

k < ` < k + γ + 1}.

Lemma. The series D(ri, π1), D(ri, π2), . . . , D(ri, πs) contains a longest increasing subsequence

of length r ≥ s− γ or more iff the graph Gi(Vi, Ei) contains a direct path of length r ≥ s− γ.

Proof. ⇒ Assume there is an increasing sequence in D(ri, π1), D(ri, π2), . . . , D(ri, πs) of length

r ≥ s − γ. Let the series be D(ri, πp1), D(ri, πp2), . . . , D(ri, πpr). There are r vertexes in the

graph that corresponds to the items in the series. There is an edge between each two neighbors

in the series (the gap between each two items is less than γ + 1 because the series length is

s− γ). Those edges creates a path of length r.

⇐ Assume there is a path of length r ≥ s − γ in the graph. From the construction, the

items in the series with the same indices of the vertexes create an increasing sequence of length

r ≥ s− γ.

The algorithm: The algorithm for finding the longest path is based on two phases:

• Building Phase: Move from v1 to vs and mark each node as follows: If no edge is pointed

to the vertex, mark the vertex with ’1’, otherwise, from all the edges pointing to the

vertex, select the edge originating from a vertex with the highest marking, add 1 and set

this mark on the current vertex.
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• Search Phase: Move from vs−γ to vs, check the marking of each vertex and return the

highest marking. If this marking is greater or equal then s−γ this is the longest increasing

subsequence, otherwise no increasing subsequence of length s− γ exists.

See figure 4.2 for example of the graph created, the marking in the vertexes after running

the algorithm.

Lemma. The algorithm returns the length of the longest directed path in the graph of length

s− γ or more, and returns no result otherwise.

Proof. We show by negation that any result but the correct one is impossible. There are four

possible wrong answers:

• A valid longest path exists, and the algorithm returns no result - Let λ ≥ s − γ be the

length of the longest path. Let V ′′ = {v`1 , . . . , v`λ
} be the vertexes on the path. By the

first step of the algorithm, v`1 is marked ’1’ (no other vertex has a smaller value which

points to v`1 - contradiction to the maximality of V ′′), v`2 is marked 2 (v`1 + 1), again

there aren’t two vertexes smaller than v`2 as it contradicts the maximality of V ′′′, and so

on until v`λ
is marked λ. Because the length of V ′′ is no less than s−γ then the last vertex

in V ′′, v`λ
, is one of the last γ vertexes, therefor it is selected (the marking is λ, which is

equal or greater than s− γ), in contradiction that the algorithm returns no result.

• A valid longest path exists, and the algorithm returns lower value - Let λ ≥ s− γ be the

length of the longest path. Let V ′′ = {v`1 , . . . , v`λ
} be the vertexes on the path. As shown

in the previous item, the last vertex, v`λ
, which lies in the last s− γ) vertexes, is marked

λ and the second step returns the maximal value, this contradicts that a value lower than

λ was returned.

• A valid longest path exists, and the algorithm returns higher value - from the value

λ returned a path of length λ can be build which is longer than the longest path, in

contradiction that the longest path is the longest path.

• A valid longest path does not exists, and the algorithm returns a value - from the value

returned a path of length s − γ or greater can be build, in contradiction that no valid

longest path exists.
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Appendix B

Patterns Found in the Breast Cancer

Dataset

In this appendix we show some of the patterns found in the breast cancer dataset.
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NEJM-PatientID Mutation Title Column
1 BRCA1 s1996 0
5 BRCA1 s1822 1
3 BRCA1 s1714 2
7 BRCA1 s1224 3
2 BRCA1 s1252 4
4 BRCA1 s1510 5
10 BRCA2 s1900 6
9 BRCA2 s1787 7
8 BRCA2 1721 8
10 BRCA2 s1486 9
16 Sporadic s1572 10
17 Sporadic s1324 11
15 Sporadic s1649 12
18 Sporadic s1320 13
19 Sporadic s1542 14
21 Sporadic s1281 15
20 Sporadic/Meth.BRCA1 s1321 16
6 BRCA1 s1905 17
13 BRCA2 s1816 18
14 BRCA2 s1616 19
11 BRCA2 s1063 20
12 BRCA2 s1936 21

Figure B.1: List of all the columns in the breast cancer dataset, with the meaning of every
column

Length Pattern Abs. Support Support (%)
2 19 4 2506 77.6%
3 19 21 4 1602 49.6%
4 19 20 21 4 772 23.9%
5 19 20 21 6 4 326 10.1%
6 19 20 21 3 4 1 127 3.9%
7 19 20 21 9 6 4 1 48 1.4%
8 19 20 11 5 6 3 4 1 18 0.5%

Figure B.2: OPSM patterns found (Maximal support for every length)
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γ Length Pattern Abs. Support Support (%)
1 3 15 19 4 3123 96.8%
1 4 19 20 21 4 2367 73.3%
1 5 19 20 21 18 4 1474 45.6%
1 6 19 20 21 6 4 1 739 22.9%
1 7 19 20 21 9 6 4 1 332 10.2%
2 7 19 20 11 21 6 1 4 1141 35.3%
2 8 19 20 11 21 6 13 4 1 576 17.8%

Figure B.3: OPSM with Errors patterns found

Group Len Length Pattern Abs. Support Support (%)
2 3 {19} {1 4} 2243 69.5%
2 4 {19 20} {1 4} 1772 54.9%
2 5 {19 20} {21} {1 4} 870 26.9%
2 6 {19 20} {6 21} {1 4} 530 16.4%
2 7 {19 20} {21} {6 9} {1 4} 205 6.3%
2 8 {19 20} {14 21} {6 9} {1 4} 99 3.0%
3 4 {19} {1 4 21} 1977 61.2%
3 5 {14 19 20} {1 4} 1409 43.6%
3 6 {14 19 20} {1 4 13} 956 29.6%
3 7 {19} {18 20 21} {1 4 7} 377 11.6%
3 8 {19 20} {11 14 21} {1 4 13} 214 6.6%

Figure B.4: Increasing Groups Sequence patterns found

Length Pattern Abs. Support Support (%)
6 19⇒20, 19⇒21, 20⇒1, 20⇒7, 21⇒4 766 23.7%
8 19⇒14, 19⇒20, 14⇒1, 14⇒13, 20⇒7, 20⇒21, 21⇒4 366 11.3%

Figure B.5: Connected DAG - Binary tree patterns found
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