
AIM2: Improved implementation of AIM

Sagi Shporer
School of Computer Science

Tel-Aviv University
Tel Aviv, Israel

shporer@tau.ac.il

Abstract

We present AIM2-F , an improved implementation
of AIM-F [4] algorithm for mining frequent itemsets.
Past studies have proposed various algorithms and tech-
niques for improving the efficiency of the mining task.
We have presented AIM-F at FIMI’03, a combina-
tion of some techniques into an algorithm which uti-
lize those techniques dynamically according to the in-
put dataset. The algorithm main features include depth
first search with vertical compressed database, diffset,
parent equivalence pruning, dynamic reordering and
projection. Experimental testing suggests that AIM2-
F outperforms existing algorithm implementations on
various datasets.

1. Introduction

Finding association rules is one of the driving ap-
plications in data mining, and much research has been
done in this field [7, 3, 5]. Using the support-confidence
framework, proposed in the seminal paper of [1], the
problem is split into two parts — (a) finding frequent
itemsets, and (b) generating association rules.

Let I be a set of items. A subset X ⊆ I is called
an itemset. Let D be a transactional database, where
each transaction T ∈ D is a subset of I : T ⊆ I. For an
itemset X, support(X) is defined to be the number of
transactions T for which X ⊆ T . For a given parameter
minsupport, an itemset X is call a frequent itemset
if support(X) ≥ minsupport. The set of all frequent
itemsets is denoted by F .

We have presented AIM-F [4] for mining frequent
itemsets. The AIM-F algorithm build upon several
ideas appearing in previous work, a partial list of which
is the following: Apriori [2], Lexicographic Trees and
Depth First Search Traversal [6], Dynamic Reordering
[5], Vertical Bit Vectors [7, 3], Projection [3], Difference

sets [9], Dynamic Reordering [5], Parent Equivalence
Pruning [3, 8] and Bit-vector projection [3].

High level pseudo code for the AIM-F algorithm ap-
pears in Figure 1.

AIM-F(n : node, minsupport : integer)
(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃
α)

(4) if (sα = support(n.head))
(5) add α to the list of items removed by PEP
(6) remove α from t
(7) else if (sα < minsupport)
(8) remove α from t
(9) Sort items in t by sα in ascending order.
(10)While t 6= ∅
(11) Let α be the first item in t
(12) remove α from t
(13) n′.head = n.head

⋃
α

(14) n′.tail = t
(15) Report n′.head

⋃{All subsets of items
removed by PEP} as frequent itemsets

(16) AIM-F(n′)

Figure 1. AIM- F

2. Implementation Improvements

We now describe the difference between AIM-F and
AIM2-F implementations:

• Integer to String conversions - Experiments run
time analysis have shown that the conversion of
integers to strings is a major CPU consumer. To
reduce conversion time two steps are taken:

– Item name conversion - When printing an
itemset all the item names in the itemset are



Figure 2. Connect dataset: Testing AIM2- F
with and without the string conversion im-
provements

printed. In this mining task the items are
numbers, and need to be converted to strings.
Instead of creating the string every time be-
fore printing, the conversion is done once for
every item, when the item is loaded during
the dataset reading process.

– Support conversion - To print the support it
must be converted to a string. To enable fast
conversion of the support value to string, a
static lookup table from integer to string was
added. The lookup table contains the 64K
integer values above the minSupport. Every
entry in the lookup table has the string repre-
sentation of the entry attached. Every time a
support value needs to be converted to string,
it is first checked if the value appears in the
lookup table, if so, the string is taken from
the table, with a very low cost.

In figures 2 and 3 we compare the AIM2-F al-
gorithm runtime with and without the string con-
version improvement. It is clear that this improve-
ment alone contribute up to an order of magnitude
improvement. As the size of the input increases
(lower support) the contribution of the string con-
version improvements increases.

• Late F2 matrix construction - The size of the
F2 matrix is I2 where I is the number of items.
In datasets where the number of items is very
large the F2 matrix can not be constructed. The
improvement in AIM2-F is that the F2 matrix
is built only for items for which support(i) ≥

Figure 3. Chess dataset: Testing AIM2- F with
and without the string conversion improve-
ments

minSupport. This enables the construction of the
F2 for larger datasets.

• Input buffer reuse - In AIM-F the dataset load
method allocated an input buffer for every trans-
action read. Switching to a single input buffer
that is re-used for all the transactions reduced the
loading time in AIM2-F by nearly 50%. However
the loading time is usually insignificant comparing
to the overall runtime (unless the support is very
high).

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining as-
sociation rules between sets of items in large databases.
In SIGMOD, pages 207–216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, pages 487–499, 1994.

[3] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: a
maximal frequent itemset algorithm for transactional
databases. In ICDE, 2001.

[4] A. Fiat and S. Shporer. Aim: Another itemset miner.
In FIMI, 2003.

[5] R. J. B. Jr. Efficiently mining long patterns from
databases. In SIGMOD, pages 85–93, 1998.

[6] R. Rymon. Search through systematic set enumeration.
In KR-92, pages 539–550, 1992.

[7] P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia,
M. Bawa, and D. Shah. Turbo-charging vertical mining
of large databases. In SIGMOD, 2000.

[8] M. J. Zaki. Scalable algorithms for association mining.
Knowledge and Data Engineering, 12(2):372–390, 2000.

[9] M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. In KDD, pages 326–335, 2003.

2


